PC-450C
A Stabilized, Hard Water Inhibited, Developer Concentrate

Product Description
PC-450C is a carbonate based, liquid developer concentrate for developing fully or semi aqueous dry films and/or liquid photo imagable solder masks. PC-450C contains a chemical stabilizer and cleaner. This economical concentrate can also be employed in manual or automated replenishment systems.

Performance Features
• PC-450C is formulated with a unique hard water scale inhibitor which will not dull fused solder during LPI solder mask processing.
• PC-450C is compatible with virtually all type of aqueous and semi aqueous dry films and LPI solder masks.
• PC-450C is stabilized, improving process consistency and extending bath life up to 20%.
• PC-450C is formulated with an advanced cleaner package inhibiting the redeposition of contaminants.

Physical Specifications

<table>
<thead>
<tr>
<th>Physical State</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Transparent Solution</td>
</tr>
<tr>
<td>Odor</td>
<td>Odorless</td>
</tr>
<tr>
<td>Stability</td>
<td>Stable</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.32</td>
</tr>
<tr>
<td>pH</td>
<td>> 11</td>
</tr>
</tbody>
</table>

Equipment Requirements
Tanks: Constructed Of Polypropylene, Polyethylene, PVC Or CPVC.
Heaters: Quartz, Titanium, Stainless Steel, Or Teflon Encased Steel.
Racks/Baskets: Constructed of Polyethylene, Polypropylene, Stainless Steel Or Plastisol Coated Steel.
Cooling Coils: Polyethylene, Polypropylene, Teflon, Stainless Steel Or Plastisol Coated Steel.
Ventilation: Recommended
Agitation: Spray Processing May Require The Addition Of Anti-Foam. A Nonpetroleum-Based Anti-Foam Such As Seacole’s Anti/Foam CR-98S Is Recommended.
Filtration: Continuous Filtration Is Recommended.
Product Make-Up
PC-450C must be diluted prior to use. Please refer to the following chart on recommended concentrations.
Per 100 gallon Bath:

<table>
<thead>
<tr>
<th>Type of Photopolymer</th>
<th>PC-450C (gal)</th>
<th>Water (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Aqueous Dry Film</td>
<td>2.2</td>
<td>97.8</td>
</tr>
<tr>
<td>LPIm</td>
<td>2.7</td>
<td>97.3</td>
</tr>
</tbody>
</table>

Always follow manufacturers recommendation regarding the carbonate concentration suitable for developing a specific photopolymer. The above data is to be used as a guide only. The following procedure is recommended for mixing the bath.

Procedure
1. Thoroughly rinse the tank and inspect for cleanliness paying special attention to the heaters and heater sheathings, and cooling coils.
2. Fill the tank half full with deionized water. Add PC-450C such that after final dilution the concentration desired is obtained. Fill the tank to operating level with deionized water.
3. Measure the potassium carbonate concentration by employing the test method described in this data sheet.
4. Turn on heaters and verify temperature with a thermometer.

NOTE: To assure optimum performance, it is recommended deionized or distilled water be used to dilute PC-450C.

PC-450C should be operated within the specifications of your dry film and/or LPI solder mask supplier. Typically, these specifications are as follows:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium Carbonate Concentration</td>
<td>0.85 - 1.10% By Weight</td>
</tr>
<tr>
<td>Temperature</td>
<td>85 - 110</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>30 - 150 Seconds To Maintain 50% “Break”</td>
</tr>
</tbody>
</table>

Control and Replenishment

BATCH DUMP PROCESSING
Make-up a new bath at the desired concentration and measure the pH. The pH of a new bath should be 11.0 - 11.6 depending upon sump cleanliness and water quality. During operating, periodically measure the pH of the bath. The bath should be dumped when the pH drops below 10.3 pH units.
AUTOMATED FEED AND BLEED PROCESSING

Only two variables, the pH and percent by weight (%w/w) total carbonate require control during processing. It is recommended the pH be maintained between 10.70 - 10.75. This is most effectively accomplished by employing an automated feed and bleed pH control system. It is unnecessary to dump the bath except during routine equipment maintenance, eliminating frequent bath make-ups and heat-up time. Additionally, because the pH is held constant (+/- 0.025 pH units), it is unnecessary to continually adjust conveyor speed to control the break point.

Measuring the Percent by Weight Total Carbonate

The percent by weight (% w/w) of PC-450C in the working bath or diluted feed line can be calculated using the procedure below.

<table>
<thead>
<tr>
<th>Equipment Required</th>
<th>Reagents Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buret, 50 ml</td>
<td>Methyl Orange Indicator</td>
</tr>
<tr>
<td>Erlenmeyer Flask, 250 ml</td>
<td>Hydrochloric Or Sulfuric Acid - Standardized .10N</td>
</tr>
<tr>
<td>Pipet, 50 ml</td>
<td></td>
</tr>
</tbody>
</table>

Procedure

1. Pipet 50 ml of sample into a 250 ml Erlenmeyer flask containing approximately 50 ml of deionized water.
2. Add approximately 10 drops of indicator and titrate with standardized acid from an orange to a red endpoint. Record the mls of titrant required to reach the endpoint.

Calculation

\[\frac{A \times B \times C}{2 \times D} = \text{g/L potassium carbonate} \]

NOTE: The g/L total carbonate divided by 10 equals % w/w total carbonate.

Where

- A = volume of titrant required in ml
- B = N of the titrant
- C = M.W. potassium carbonate (138.2)
- D = sample volume in ml
Safety and Handling
Read and understand this product’s MSDS before handling.

Waste Treatment
Individual users should verify the nature of spent solutions to assure compliance with local, state, and federal regulations. Contact Seacole for specific details and/or further waste treatment recommendations.

Ordering Information
PC-450C is available in 5 gallon pails, 55 gallon drums, and 275 gallon totes.